Estimating Chlorophyll Concentration Index in Sugar Beet Leaves Using an Artificial Neural Network
نویسندگان
چکیده
منابع مشابه
The optimization of root nutrient content for increased sugar beet productivity using an artificial neural network
Conventional procedures are inadequate for optimizing the concentrations ofnutrients to increase the sugar yield. In this study, an artificial neural network(ANN) was used to optimize the Ca, Mg, N, K and Na content of the storage rootto increase sugar yield (Y) by increasing both sugar content (SC) and root yield(T). Data from three field experiments were used to produce a wide range ofvariati...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Sugar transport in conducting elements of sugar beet leaves.
Autoradiography was used to determine the distribution of labeled sugar in conducting elements of the blade and petiole of sugar beet leaves at intervals ranging from 5 sec to 24 hr. The processes of assimilation by the green cells, collection of sugar in the minor veins and export in phloem elements were demonstrated visually. It appears that in minor veins sugar is translocated in companion c...
متن کاملPrediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
متن کاملForecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach
Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polish Journal of Environmental Studies
سال: 2019
ISSN: 1230-1485,2083-5906
DOI: 10.15244/pjoes/95031